1:"$Sreact.fragment" 2:I[3327,[],""] 3:I[7987,[],""] 4:I[9430,["430","static/chunks/430-3e18fa6ca90d78cd.js","345","static/chunks/app/not-found-a37cccdde72e5761.js"],""] 5:I[5312,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"AppContextProvider"] 6:I[5198,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] 7:I[3141,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] 8:I[949,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] 9:I[3745,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] a:I[8093,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] b:I[6984,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] c:I[788,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] e:I[6253,[],"OutletBoundary"] 10:I[5883,[],"AsyncMetadataOutlet"] 12:I[6253,[],"ViewportBoundary"] 14:I[6253,[],"MetadataBoundary"] 15:"$Sreact.suspense" 17:I[7077,[],""] :HL["/_next/static/media/7b0b24f36b1a6d0b-s.p.woff2","font",{"crossOrigin":"","type":"font/woff2"}] :HL["/_next/static/css/466de881f30bd7cb.css","style"] :HL["/_next/static/css/3bff27290ed8abbd.css","style"] 0:{"P":null,"b":"qQuEFBCw_Ffe8Nd4r6Bz1","p":"","c":["","projects","positivus"],"i":false,"f":[[["",{"children":["(main)",{"children":["projects",{"children":[["slug","positivus","d"],{"children":["__PAGE__",{}]}]}]}]},"$undefined","$undefined",true],["",["$","$1","c",{"children":[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/466de881f30bd7cb.css","precedence":"next","crossOrigin":"$undefined","nonce":"$undefined"}]],["$","html",null,{"lang":"en","children":["$","body",null,{"className":"font-sans antialiased __variable_d67418","children":["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","section",null,{"className":"section-container max-w-xl min-h-screen flex flex-col justify-center items-center gap-4 text-center","children":[["$","h1",null,{"className":"text-3xl sm:text-5xl md:text-6xl lg:text-7xl xl:text-8xl font-black uppercase tracking-tight text-center text-gray-800","children":"404"}],["$","p",null,{"children":"Found a dead end. Looks like you lost your way. The page you're looking for might have moved or doesn't exist."}],["$","$L4",null,{"className":"underline","href":"/","children":"Take me home"}]]}],[]],"forbidden":"$undefined","unauthorized":"$undefined"}]}]}]]}],{"children":["(main)",["$","$1","c",{"children":[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/3bff27290ed8abbd.css","precedence":"next","crossOrigin":"$undefined","nonce":"$undefined"}]],["$","html",null,{"lang":"en","children":["$","body",null,{"className":"font-sans antialiased __variable_d67418","children":["$","$L5",null,{"children":[["$","$L6",null,{"children":[["$","$L7",null,{}],["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}],["$","$L8",null,{}]]}],["$","$L9",null,{}],["$","$La",null,{"className":"fixed inset-0 z-10 w-screen h-screen"}],["$","$Lb",null,{"className":"fixed inset-0 z-10 w-screen h-screen"}],["$","$Lc",null,{}]]}]}]}]]}],{"children":["projects",["$","$1","c",{"children":[null,["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}]]}],{"children":[["slug","positivus","d"],["$","$1","c",{"children":[null,["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}]]}],{"children":["__PAGE__",["$","$1","c",{"children":["$Ld",null,["$","$Le",null,{"children":["$Lf",["$","$L10",null,{"promise":"$@11"}]]}]]}],{},null,false]},null,false]},null,false]},null,false]},null,false],["$","$1","h",{"children":[null,[["$","$L12",null,{"children":"$L13"}],["$","meta",null,{"name":"next-size-adjust","content":""}]],["$","$L14",null,{"children":["$","div",null,{"hidden":true,"children":["$","$15",null,{"fallback":null,"children":"$L16"}]}]}]]}],false]],"m":"$undefined","G":["$17",[]],"s":false,"S":true} 13:[["$","meta","0",{"charSet":"utf-8"}],["$","meta","1",{"name":"viewport","content":"width=device-width, initial-scale=1"}]] f:null 18:I[6340,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","128","static/chunks/128-6f3cb5aa184e5eba.js","904","static/chunks/904-e9f8c5daee6a6f1c.js","210","static/chunks/app/(main)/projects/%5Bslug%5D/page-2c9a97948f0ea147.js"],"default"] 1c:I[4419,[],"IconMark"] d:["$","$L18",null,{"project":{"slug":"positivus","content":[["$","h2",null,{"children":"Project Overview"}],"\n",["$","p",null,{"children":"Developed an interactive Power BI dashboard at Georgia State University that analyzed 25GB of healthcare datasets to identify improvement opportunities in patient care and emergency department operations. The project involved comprehensive exploratory data analysis using Python to uncover trends among patients and their respective diseases."}],"\n",["$","p",null,{"children":"The dashboard visualized healthcare trends across multiple demographic dimensions including city, area, age, gender, race, and occupation, resulting in a 17% improvement in operational efficiency for ER departments."}],"\n",["$","h2",null,{"children":"Key Features"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Multi-Dimensional Analysis"}],": Analyzed healthcare trends by city, area, age, gender, race, and occupation"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Interactive Visualizations"}],": Created dynamic Power BI dashboards for stakeholder exploration"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Predictive Insights"}],": Identified patterns that enabled proactive healthcare resource allocation"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Real-Time Updates"}],": Dashboard updated with latest patient data for current insights"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"KPI Tracking"}],": Monitored key performance indicators for emergency department efficiency"]}],"\n"]}],"\n",["$","h2",null,{"children":"Technologies Used"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Python"}],": Data processing and exploratory data analysis"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Pandas"}],": Data manipulation and cleaning"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Matplotlib"}],": Statistical visualizations"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Scikit-learn"}],": Machine learning models for pattern identification"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Power BI"}],": Interactive dashboard development"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Google Colab"}],": Collaborative data analysis environment"]}],"\n"]}],"\n",["$","h2",null,{"children":"Research Methodology"}],"\n",["$","p",null,{"children":"The project followed a systematic approach:"}],"\n",["$","ol",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Data Collection"}],": Aggregated 25GB of healthcare records from various sources"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Data Cleaning"}],": Processed and cleaned raw data for analysis"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Exploratory Analysis"}],": Identified patterns and trends using statistical methods"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Visualization"}],": Created interactive dashboards for stakeholder communication"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Validation"}],": Tested findings with clinical stakeholders"]}],"\n"]}],"\n",["$","h2",null,{"children":"Challenges & Solutions"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Data Volume"}],": Handled large datasets through efficient data processing techniques and sampling strategies"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Data Privacy"}],": Ensured HIPAA compliance through proper data anonymization"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Data Quality"}],": Addressed missing values and inconsistencies in healthcare records"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Stakeholder Communication"}],": Translated complex analytical findings into actionable insights for non-technical users"]}],"\n"]}],"\n",["$","h2",null,{"children":"Business Impact"}],"\n",["$","p",null,{"children":"The healthcare analytics dashboard delivered significant value:"}],"\n","$L19","\n","$L1a","\n","$L1b"],"data":{"title":"Patient Healthcare Analytics Dashboard","description":"Interactive Power BI dashboard analyzing 25GB of healthcare data achieving 17% operational efficiency improvement","date":"2023-05-10","type":"Healthcare Analytics","services":["Data Analysis","Business Intelligence","Healthcare Analytics"],"role":"Graduate Research Assistant","tags":["Python","Power BI","Pandas","Matplotlib","Google Colab","Data Visualization","Healthcare","EDA"],"url":"","image":{"src":"/media/positivus/featured.png","width":1440,"height":1024},"color":"#ffb900","featured":false}},"prevProject":{"slug":"jadoo","data":{"title":"Multi-Channel Retail Data Platform","description":"Comprehensive retail data solution with batch processing pipelines for sales, inventory, and order management","date":"2023-06-15","type":"Data Integration","services":["Data Pipeline Development","Batch Processing","Data Integration"],"role":"Azure Data Engineer","tags":["Azure Data Factory","Azure Synapse","ADLS","Batch Processing","ETL","Sales Analytics","Inventory Management"],"url":"","image":{"src":"/media/jadoo/featured.png","width":1440,"height":1024},"color":"#50e6ff","featured":true}},"nextProject":{"slug":"presentation-template","data":{"title":"Supply Chain Process Automation","description":"Automated advanced shipment notice workflow streamlining vendor-to-company information flow","date":"2020-11-20","type":"Process Innovation","services":["Workflow Automation","Process Design","System Integration"],"role":"Design Engineer","tags":["Workflow Automation","Process Design","Supply Chain","SharePoint","Systems Integration","Process Optimization"],"url":"","image":{"src":"/media/presentation-template/featured.png","width":1440,"height":1024},"color":"#83c5be","featured":false}}}] 11:{"metadata":[["$","title","0",{"children":"Patient Healthcare Analytics Dashboard | Naveen Kalluri"}],["$","meta","1",{"name":"description","content":"Interactive Power BI dashboard analyzing 25GB of healthcare data achieving 17% operational efficiency improvement"}],["$","link","2",{"rel":"icon","href":"/favicon.ico","type":"image/x-icon","sizes":"256x256"}],["$","$L1c","3",{}]],"error":null,"digest":"$undefined"} 16:"$11:metadata" 19:["$","ul",null,{"children":["\n",["$","li",null,{"children":"17% improvement in emergency department operational efficiency"}],"\n",["$","li",null,{"children":"Better resource allocation based on patient flow predictions"}],"\n",["$","li",null,{"children":"Improved patient care through identification of high-risk populations"}],"\n",["$","li",null,{"children":"Data-driven decision making for hospital administrators"}],"\n",["$","li",null,{"children":"Foundation for predictive healthcare analytics initiatives"}],"\n"]}] 1a:["$","h2",null,{"children":"My Role"}] 1b:["$","p",null,{"children":"As Graduate Research Assistant, I conducted all phases of the data analysis project including data collection, cleaning, exploratory analysis, and dashboard development. I worked directly with clinical stakeholders to understand their needs and presented findings to university administration."}]