1:"$Sreact.fragment" 2:I[3327,[],""] 3:I[7987,[],""] 4:I[9430,["430","static/chunks/430-3e18fa6ca90d78cd.js","345","static/chunks/app/not-found-a37cccdde72e5761.js"],""] 5:I[5312,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"AppContextProvider"] 6:I[5198,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] 7:I[3141,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] 8:I[949,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] 9:I[3745,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] a:I[8093,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] b:I[6984,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] c:I[788,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","95","static/chunks/95-c3c40aa5017f7140.js","76","static/chunks/app/(main)/layout-2c6f19cab5401daf.js"],"default"] e:I[6253,[],"OutletBoundary"] 10:I[5883,[],"AsyncMetadataOutlet"] 12:I[6253,[],"ViewportBoundary"] 14:I[6253,[],"MetadataBoundary"] 15:"$Sreact.suspense" 17:I[7077,[],""] :HL["/_next/static/media/7b0b24f36b1a6d0b-s.p.woff2","font",{"crossOrigin":"","type":"font/woff2"}] :HL["/_next/static/css/466de881f30bd7cb.css","style"] :HL["/_next/static/css/3bff27290ed8abbd.css","style"] 0:{"P":null,"b":"qQuEFBCw_Ffe8Nd4r6Bz1","p":"","c":["","projects","jadoo"],"i":false,"f":[[["",{"children":["(main)",{"children":["projects",{"children":[["slug","jadoo","d"],{"children":["__PAGE__",{}]}]}]}]},"$undefined","$undefined",true],["",["$","$1","c",{"children":[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/466de881f30bd7cb.css","precedence":"next","crossOrigin":"$undefined","nonce":"$undefined"}]],["$","html",null,{"lang":"en","children":["$","body",null,{"className":"font-sans antialiased __variable_d67418","children":["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","section",null,{"className":"section-container max-w-xl min-h-screen flex flex-col justify-center items-center gap-4 text-center","children":[["$","h1",null,{"className":"text-3xl sm:text-5xl md:text-6xl lg:text-7xl xl:text-8xl font-black uppercase tracking-tight text-center text-gray-800","children":"404"}],["$","p",null,{"children":"Found a dead end. Looks like you lost your way. The page you're looking for might have moved or doesn't exist."}],["$","$L4",null,{"className":"underline","href":"/","children":"Take me home"}]]}],[]],"forbidden":"$undefined","unauthorized":"$undefined"}]}]}]]}],{"children":["(main)",["$","$1","c",{"children":[[["$","link","0",{"rel":"stylesheet","href":"/_next/static/css/3bff27290ed8abbd.css","precedence":"next","crossOrigin":"$undefined","nonce":"$undefined"}]],["$","html",null,{"lang":"en","children":["$","body",null,{"className":"font-sans antialiased __variable_d67418","children":["$","$L5",null,{"children":[["$","$L6",null,{"children":[["$","$L7",null,{}],["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}],["$","$L8",null,{}]]}],["$","$L9",null,{}],["$","$La",null,{"className":"fixed inset-0 z-10 w-screen h-screen"}],["$","$Lb",null,{"className":"fixed inset-0 z-10 w-screen h-screen"}],["$","$Lc",null,{}]]}]}]}]]}],{"children":["projects",["$","$1","c",{"children":[null,["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}]]}],{"children":[["slug","jadoo","d"],["$","$1","c",{"children":[null,["$","$L2",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L3",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}]]}],{"children":["__PAGE__",["$","$1","c",{"children":["$Ld",null,["$","$Le",null,{"children":["$Lf",["$","$L10",null,{"promise":"$@11"}]]}]]}],{},null,false]},null,false]},null,false]},null,false]},null,false],["$","$1","h",{"children":[null,[["$","$L12",null,{"children":"$L13"}],["$","meta",null,{"name":"next-size-adjust","content":""}]],["$","$L14",null,{"children":["$","div",null,{"hidden":true,"children":["$","$15",null,{"fallback":null,"children":"$L16"}]}]}]]}],false]],"m":"$undefined","G":["$17",[]],"s":false,"S":true} 13:[["$","meta","0",{"charSet":"utf-8"}],["$","meta","1",{"name":"viewport","content":"width=device-width, initial-scale=1"}]] f:null 18:I[6340,["340","static/chunks/0b0944fb-1f75ba373df7747e.js","430","static/chunks/430-3e18fa6ca90d78cd.js","758","static/chunks/758-2faeec29345bc6b9.js","128","static/chunks/128-6f3cb5aa184e5eba.js","904","static/chunks/904-e9f8c5daee6a6f1c.js","210","static/chunks/app/(main)/projects/%5Bslug%5D/page-2c9a97948f0ea147.js"],"default"] 20:I[4419,[],"IconMark"] d:["$","$L18",null,{"project":{"slug":"jadoo","content":[["$","h2",null,{"children":"Project Overview"}],"\n",["$","p",null,{"children":"Implemented a comprehensive multi-channel retail data platform that integrated sales data, product information, store operations, purchase orders, and invoicing data across the enterprise. The solution was built using Azure Data Factory and Synapse Analytics to handle complex batch processing requirements."}],"\n",["$","p",null,{"children":"The platform enabled real-time visibility into retail operations, providing stakeholders with actionable insights for inventory management, sales optimization, and supply chain efficiency."}],"\n",["$","h2",null,{"children":"Key Features"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Multi-Source Integration"}],": Consolidated data from sales systems, product databases, store networks, and supply chain platforms"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Batch Processing Pipelines"}],": Built scalable batch processing pipelines handling millions of transactions daily"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Sales Analytics"}],": Real-time sales data analysis across multiple channels and geographic regions"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Inventory Management"}],": Automated inventory tracking and reorder point calculations"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Purchase Order Processing"}],": Streamlined purchase order workflows and tracking"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Invoice Management"}],": Automated invoicing data processing and reconciliation"]}],"\n"]}],"\n",["$","h2",null,{"children":"Technologies Used"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Azure Data Factory (ADF)"}],": Pipeline orchestration and data movement"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Azure Synapse Analytics"}],": Data warehousing and analytics"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Azure Data Lake Storage (ADLS)"}],": Centralized data storage"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"SQL Server"}],": Relational data storage and processing"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Power BI"}],": Business intelligence and reporting"]}],"\n"]}],"\n",["$","h2",null,{"children":"Technical Implementation"}],"\n",["$","p",null,{"children":"The solution architecture leveraged Azure Data Factory for orchestrating data movement from various source systems into Azure Data Lake Storage. Data was then processed through Azure Synapse Analytics, where complex transformations were applied to create business-ready datasets."}],"\n",["$","p",null,{"children":"Batch processing pipelines were scheduled to run at optimal times to minimize impact on operational systems while ensuring data freshness for reporting and analytics."}],"\n",["$","h2",null,{"children":"Data Flow Architecture"}],"\n",["$","ol",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Ingestion Layer"}],": ADF pipelines extract data from multiple source systems"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Storage Layer"}],": Raw data lands in ADLS Gen2 with appropriate partitioning"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Processing Layer"}],": Synapse Analytics performs transformations and aggregations"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Serving Layer"}],": Curated data made available for BI tools and applications"]}],"\n"]}],"\n",["$","h2",null,{"children":"Challenges & Solutions"}],"\n",["$","ul",null,{"children":["\n",["$","li",null,{"children":[["$","strong",null,{"children":"Data Volume"}],": Handled large transaction volumes through optimized partitioning and parallel processing"]}],"\n",["$","li",null,{"children":[["$","strong",null,{"children":"Data Quality"}],": Implemented validation rules and data quality checks at each processing stage"]}],"\n","$L19","\n","$L1a","\n"]}],"\n","$L1b","\n","$L1c","\n","$L1d","\n","$L1e","\n","$L1f"],"data":{"title":"Multi-Channel Retail Data Platform","description":"Comprehensive retail data solution with batch processing pipelines for sales, inventory, and order management","date":"2023-06-15","type":"Data Integration","services":["Data Pipeline Development","Batch Processing","Data Integration"],"role":"Azure Data Engineer","tags":["Azure Data Factory","Azure Synapse","ADLS","Batch Processing","ETL","Sales Analytics","Inventory Management"],"url":"","image":{"src":"/media/jadoo/featured.png","width":1440,"height":1024},"color":"#50e6ff","featured":true}},"prevProject":{"slug":"fahri-2025","data":{"title":"Insurance Data Warehousing Platform","description":"Medallion Architecture implementation achieving 40% cloud compute cost reduction through legacy code optimization","date":"2023-12-20","type":"Data Warehousing","services":["Data Engineering","Cloud Migration","Data Architecture"],"role":"Azure Data Engineer","tags":["Azure Cloud","Databricks","Medallion Architecture","Azure Data Lake","Azure Synapse","Azure Logic Apps","Azure DevOps","CI/CD"],"url":"","image":{"src":"/media/fahri-2025/featured.png","width":1440,"height":1024},"color":"#005a9e","featured":true}},"nextProject":{"slug":"positivus","data":{"title":"Patient Healthcare Analytics Dashboard","description":"Interactive Power BI dashboard analyzing 25GB of healthcare data achieving 17% operational efficiency improvement","date":"2023-05-10","type":"Healthcare Analytics","services":["Data Analysis","Business Intelligence","Healthcare Analytics"],"role":"Graduate Research Assistant","tags":["Python","Power BI","Pandas","Matplotlib","Google Colab","Data Visualization","Healthcare","EDA"],"url":"","image":{"src":"/media/positivus/featured.png","width":1440,"height":1024},"color":"#ffb900","featured":false}}}] 11:{"metadata":[["$","title","0",{"children":"Multi-Channel Retail Data Platform | Naveen Kalluri"}],["$","meta","1",{"name":"description","content":"Comprehensive retail data solution with batch processing pipelines for sales, inventory, and order management"}],["$","link","2",{"rel":"icon","href":"/favicon.ico","type":"image/x-icon","sizes":"256x256"}],["$","$L20","3",{}]],"error":null,"digest":"$undefined"} 16:"$11:metadata" 19:["$","li",null,{"children":[["$","strong",null,{"children":"System Integration"}],": Created robust connectors for legacy systems with varying data formats"]}] 1a:["$","li",null,{"children":[["$","strong",null,{"children":"Performance"}],": Optimized SQL queries and data movement operations for faster processing"]}] 1b:["$","h2",null,{"children":"Business Impact"}] 1c:["$","p",null,{"children":"The retail data platform delivered measurable business value:"}] 1d:["$","ul",null,{"children":["\n",["$","li",null,{"children":"Improved inventory accuracy reducing stockouts and overstock situations"}],"\n",["$","li",null,{"children":"Enhanced sales visibility across all channels"}],"\n",["$","li",null,{"children":"Faster purchase order processing and vendor management"}],"\n",["$","li",null,{"children":"Better demand forecasting through integrated sales and inventory data"}],"\n",["$","li",null,{"children":"Reduced manual data reconciliation efforts"}],"\n"]}] 1e:["$","h2",null,{"children":"My Role"}] 1f:["$","p",null,{"children":"As Azure Data Engineer, I designed the overall data architecture, developed ADF pipelines for data ingestion, implemented transformation logic in Synapse Analytics, and created automated batch processing workflows. I collaborated with business users to understand reporting requirements and ensured data accuracy and timeliness."}]